Eve

Kodowa (2015)

Hyper-literate programming environment with a unique database/causality model.

Flappy Eve Flappy Eve

When a player starts the game, we commit a #world, a #player, and some #obstacles.
These will keep all of the essential state of the game. All of this information could have

Game menus

been stored on the world, but for clarity we break the important bits of state into objects
alculat that they effect.

- The #world tracks the distance the player has travelled, the current game screen, and
Drawing the high score.
- The #player stores his current y position and (vertical) velocity.

- The obstacles have their (horizontal) offset and gap widths. We put distance on the
world and only keep two obstacles; rather than moving the player through the world, we
Game Logic keep the player stationary and move the world past the player. When an obstacle goes off

screen, we will wrap it around, update the placement of its gap, and continue on.

Setup

Add a flappy eve and a world for it to flap in:

commit
[#player #self name: "eve" x: 25 y: 50 velocity: 01
[#world screen: "menu” frame: @ distance: best: 0 gravity: -0.061]
[#obstacle gap: 35 offset: @]
[#obstacle gap: 35 offset: -1]

Next we draw the backdrop of the world. The player and obstacle will be drawn later
based on their current state. Throughout the app we use resources from @bhauman's
flappy bird demo in clojure. Since none of these things change over time, we commit
them once when the player starts the game.

Draw the game world!

search
world = [#world]

commit @browser
world <- [#div style: [user-select: "none” -webkit-user-select: "none” -
moz-user-select: "none”] children:
[#svg #game-window viewBox: "10 @ 80 100", width: 480 children:
[#rect x: 0 y: @ width: 100 height: 53 fill: "rgb(112, 197, 206)" sort:

e State database. All state is in a database of records. Program fragments read and write to this
database, which also encapsulates errors. In this fashion, complex programs are build by
composing simple processes that read/write to the database. (Analogous, in some ways, to a
spreadsheet.)

¢ Causality tracking. Database enables system to track causality—what led to what. (This design
brings Realtalk to mind.)

¢ Inspect output (e.g. HTML) to see what might have created it.

* Hyperliterate programming. Code is not just embedded in prose, but a complex program
takes the form of navigable hierarchical prose (i.e. a book). Code view is dynamic: select which
parts of the program you want to see.

® Inline errors

¢ Inline data. Easy inline data visualization (notebook style), with some simple widgets, like bar
graphs.

http://witheve.com

